Monitoring ligand-receptor interactions by photonic force microscopy.
نویسندگان
چکیده
We introduce a method for the acquisition of single molecule force measurements of ligand-receptor interactions using the photonic force microscope (PFM). Biotin-functionalized beads, manipulated with an optical trap, and a streptavidin-functionalized coverslip were used to measure the effect of different pulling forces on the lifetime of individual streptavidin-biotin complexes. By optimizing the design of the optical trap and selection of the appropriate bead size, pulling forces in excess of 50 pN were achieved. Based on the amplitude of three-dimensional (3D) thermal position fluctuations of the attached bead, we were able to select for a bead-coverslip interaction that was mediated by a single streptavidin-biotin complex. Moreover, the developed experimental system was greatly accelerated by automation of data acquisition and analysis. In force-dependent kinetic measurements carried out between streptavidin and biotin, we observed that the streptavidin-biotin complex exhibited properties of a catch bond, with the lifetime increasing tenfold when the pulling force increased from 10 to 20 pN. We also show that silica beads were more appropriate than polystyrene beads for the force measurements, as tethers, longer than 200 nm, could be extracted from polystyrene beads.
منابع مشابه
Force history dependence of receptor-ligand dissociation.
Receptor-ligand bonds that mediate cell adhesion are often subjected to forces that regulate their dissociation via modulating off-rates. Off-rates control how long receptor-ligand bonds last and how much force they withstand. One should therefore be able to determine off-rates from either bond lifetime or unbinding force measurements. However, substantial discrepancies exist between the force ...
متن کاملAttaching Biological Molecules to AFM Probes for Nanoscale Molecular Recognition Studies
Atomic Force Microscopy (AFM) is an important tool to study nanoscale molecular interactions. A strong suit of AFM is its ability to measure ligand-receptor interactions with picoNewton sensitivity. These biomolecular interactions are critical factors in a variety of physiological processes; such as the initiation, modulation and termination of DNA replication, transcription, enzyme activity, i...
متن کاملDirect force measurements of the streptavidin-biotin interaction.
The interaction between streptavidin and its ligand, biotin, were studied by direct force measurements. The complimentary approaches of surface force apparatus (SFA) and atomic force microscopy (AFM) were used to elucidate both long-range and short-range adhesive interactions of the streptavidin biotin interaction. The high spatial resolution of the SFA provided a detailed profile of the inters...
متن کاملLigand-receptor Interactions
The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous...
متن کاملEffect of dacarbazine on CD44 in live melanoma cells as measured by atomic force microscopy-based nanoscopy
CD44 ligand-receptor interactions are known to be involved in regulating cell migration and tumor cell metastasis. High expression levels of CD44 correlate with a poor prognosis of melanoma patients. In order to understand not only the mechanistic basis for dacarbazine (DTIC)-based melanoma treatment but also the reason for the poor prognosis of melanoma patients treated with DTIC, dynamic forc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 21 25 شماره
صفحات -
تاریخ انتشار 2010